Robust Preference-Guided Denoising for Graph based Social Recommendation

Yuhan Quan
Department of Electronic
Engineering, Tsinghua University
Beijing, China

Lingling Yi Wechat, Tencent Shenzhen, China Jingtao Ding* Department of Electronic Engineering, Tsinghua University Beijing, China

Depeng Jin
Department of Electronic
Engineering, Tsinghua University
Beijing, China

Chen Gao
Department of Electronic
Engineering, Tsinghua University
Beijing, China

Yong Li Department of Electronic Engineering, Tsinghua University Beijing, China

(WWW-2023)

code: https://github.com/tsinghua-fib-lab/Graph-Denoising-SocialRec.

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

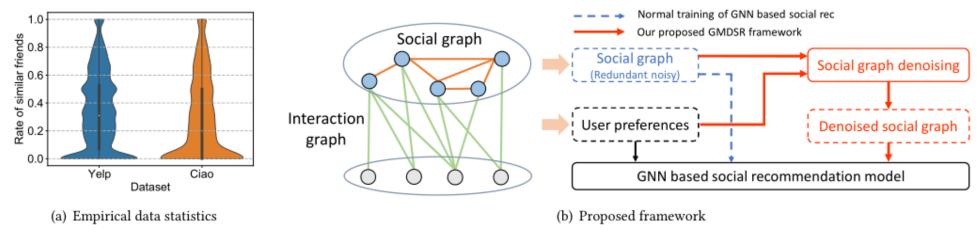


Figure 1: (a) Distribution plot w.r.t. ratio of friends having co-interactions. (b) Our proposed denoising enhanced social recommendation framework.



Figure 2: Details of graph denoising process in GDMSR.

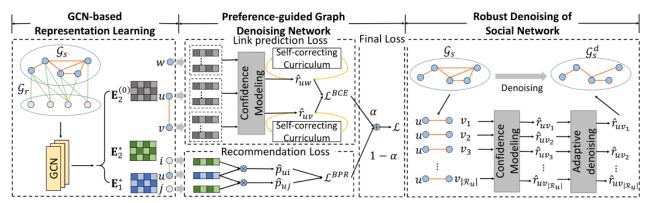


Figure 2: Details of graph denoising process in GDMSR.

$$\mathcal{G}_{\mathcal{S}}(\mathcal{U}, \mathcal{E})$$
 $\mathcal{U} = \{u\} \text{ and } \mathcal{R} = \{(u, v) | r_{uv} = 1, \forall u, v \in \mathcal{U}\}$

$$\mathbf{E}_1 \in \mathbb{R}^{N \times D}$$
 and $\mathbf{E}_2 \in \mathbb{R}^{M \times D}$

$$\mathbf{E}_{1,s}$$
 and $\mathbf{E}_{1,r}$,

$$\mathbf{E}_{1,s}^{(K)}(u) = \text{GNN}\left(\mathbf{E}_{1}^{(K-1)}(u), \left\{\mathbf{E}_{1}^{(K-1)}(v) | \forall v \in \mathcal{R}_{u}\right\}\right), \quad (1)$$

$$\mathbf{E}_{1,r}^{(K)}(u) = \text{GNN}\left(\mathbf{E}_{1}^{(K-1)}(u), \left\{\mathbf{E}_{2}^{(K-1)}(i) | \forall i \in \mathcal{P}_{u}\right\}\right), \tag{2}$$

$$\mathbf{E}_{1}^{(K)}(u) = \text{Combine}\left(\mathbf{E}_{1,s}^{(K)}(u), \mathbf{E}_{1,r}^{(K)}(u)\right),\tag{3}$$

$$\mathbf{E}_{2}^{(K)}(i) = \text{GNN}\left(\mathbf{E}_{2}^{(K-1)}(i), \left\{\mathbf{E}_{1}^{(K-1)}(u) | \forall u \in \mathcal{P}_{i}\right\}\right), \tag{4}$$

$$\hat{p}_{ui} = \mathbf{E}_{1}^{*}(u) \cdot \mathbf{E}_{2}^{*}(i),$$
where $\mathbf{E}_{1}^{*}(u) = \frac{\sum_{k=0}^{K} \mathbf{E}_{1}^{(k)}(u)}{K+1}, \mathbf{E}_{2}^{*}(i) = \frac{\sum_{k=0}^{K} \mathbf{E}_{2}^{(k)}(i)}{K+1}.$ (5)

$$\mathcal{L}^{BPR} = \sum_{(u,i,j)\in\overline{\mathcal{P}}} -\ln \sigma(\hat{p}_{ui} - \hat{p}_{uj}), \tag{6}$$

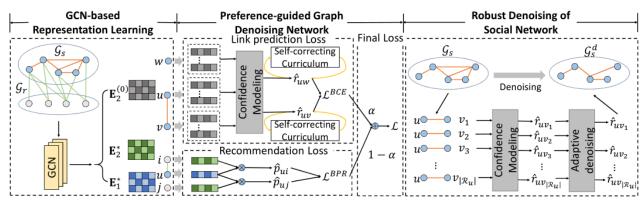


Figure 2: Details of graph denoising process in GDMSR.

$$\mathcal{L}^{BCE} = -\sum_{(u,v)\in\mathcal{R}} \log(\sigma(\hat{r}_{uv})) - \sum_{(u,w)\notin\mathcal{R}} \log(1 - \sigma(\hat{r}_{uw})). \tag{7}$$

$$\hat{r}_{uv} = \phi\left(\left\{\mathbf{E}_{1}^{(k)}(u)\right\}_{k=0}^{K}, \left\{\mathbf{E}_{1}^{(k)}(v)\right\}_{k=0}^{K}\right),\tag{8}$$

$$\hat{r}_{uv} = \operatorname{Trf}\left(S_L\left(\left\{\mathbf{E}_2^{(0)}(i)|\forall i \in \mathcal{P}_u\right\}\right) \oplus S_L\left(\left\{\mathbf{E}_2^{(0)}(j)|\forall j \in \mathcal{P}_v\right\}\right)\right), (9)$$

$$\mathcal{L} = \alpha \mathcal{L}^{BCE} + (1 - \alpha) \mathcal{L}^{BPR}, \tag{10}$$

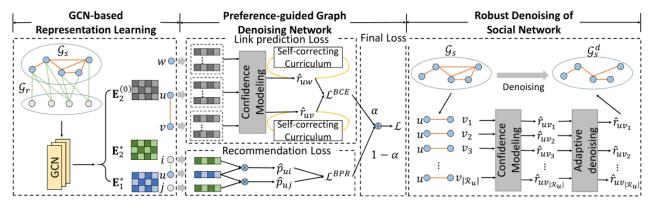


Figure 2: Details of graph denoising process in GDMSR.

$$\hat{r}_{uv}(t = kD) = \beta \cdot \hat{r}_{uv}(t = (k-1)D) + (1-\beta) \cdot \hat{r}_{uv}(t = kD), \tag{11}$$

$$\eta_{u} = \begin{cases} 0, & \text{if } |\mathcal{R}_{u}| < \epsilon, \\ \left[\lfloor \log_{10}(|\mathcal{R}_{u}|) \rfloor \right]^{\gamma} \times R, & \text{else,} \end{cases}$$
 (12)

Table 1: Basic information of datasets.

Dataset	#Users	#Items	#Interactions	#Relations	Interaction Density	Relation Density
Ciao	7,355	17,867	140,628	111,679	0.11%	0.21%
Yelp	32,827	59,972	598,121	964,510	0.03%	0.09%
Douban	2,669	15,940	535,210	32,705	1.26%	0.46%

Table 2: Overall performance of our proposed method on different recommendation methods.

Dataset		Ciao			Yelp			Douban		
Basemodel	Method	R@1	R@3	N@3	R@1	R@3	N@3	R@1	R@3	N@3
LightGCN	-	0.2298	0.0785	0.2071	0.5861	0.2774	0.5804	0.4321	0.1696	0.4156
Diffnet++	w/o denoising Rule based NeuralSparse ESRF	0.2742 0.2860 0.2869 0.2864	0.1109 0.1123 0.1153 0.1197	0.2639 0.2677 0.2734 0.2736	0.6031 0.6230 0.6383 0.6184	0.3072 0.3228 0.3289 0.3124	0.5897 0.5996 0.6054 0.5958	0.5165 0.5358 0.5470 0.5374	0.2156 0.2489 0.2226 0.2393	0.4988 0.5172 0.5102 0.5194
	GDMSR Δ	0.3020 5.26%	0.1244 3.93%	0.2821 3.11%	0.6449 1.03%	0.3291 0.06%	0.6102 0.79%	0.5614 2.63%	0.2540 2.05%	0.5297 1.98%
MHCN	w/o denoising Rule based NeuralSparse ESRF GDMSR	0.2330 0.2301 0.2461 <u>0.2495</u> 0.2618	0.0884 0.0916 0.1034 0.1028 0.1138	0.2297 0.2311 0.2540 <u>0.2568</u> 0.2632	0.6991 0.6966 0.7012 0.6927 0.7036	0.3252 0.3234 0.3288 0.3298 0.3405	0.6364 0.6347 0.6352 0.6344 0.6434	0.6198 0.6082 <u>0.6206</u> 0.6194 0.6396	0.3167 0.3372 0.3349 0.3244 0.3496	0.5933 0.5980 0.6011 0.5995 0.6137
	Δ	4.93%	10.06%	2.50%	0.34%	3.24%	1.10%	3.06%	3.68%	2.10%



Figure 3: (a)-(b) Performance on different α for co-optimization. (c)-(d) Performance comparison among different relation confidence modeling structures.

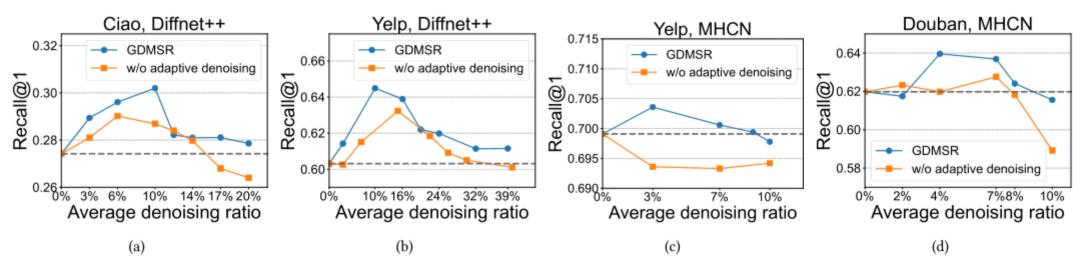


Figure 4: Analysis of denoising robustness with respect to recommendation accuracy under different denoising ratio.

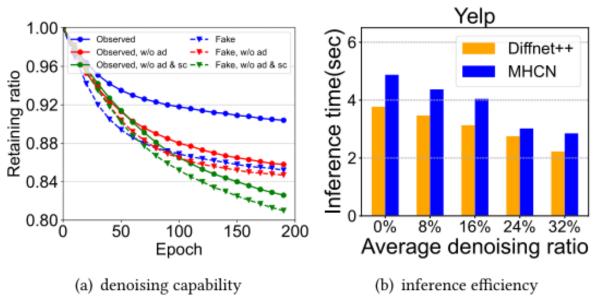


Figure 5: (a) Retaining ratio of social relations adopting different denoising strategies (synthetic). (b) Efficiency comparison w.r.t. social graph related inference time (Yelp).

Table 3: Overall performance of GDMSR based on 30% of interaction data.

Dataset		Ciao			Yelp			Douban		
Basemodel	Method	R@1	R@3	N@3	R@1	R@3	N@3	R@1	R@3	N@3
Diffnet++	w/o denoising	0.2742	0.1109	0.2639	0.6031	0.3072	0.5897	0.5165	0.2156	0.4988
	GDMSR	0.2899	0.1175	0.2755	0.6305	0.3189	0.6021	0.5490	0.2497	0.5295
	Δ	5.73%	5.95%	4.40%	4.54%	3.81%	2.10%	6.29%	15.82%	6.15%
MHCN	w/o denoising	0.2330	0.0884	0.2297	0.6991	0.3252	0.6364	0.6198	0.3167	0.5933
	GDMSR	0.2616	0.1093	0.2638	0.7005	0.3438	0.6445	0.6148	0.3360	0.6012
	Δ	12.27%	23.64%	14.85%	0.20%	5.72%	1.27%	-0.81%	6.09%	1.33%

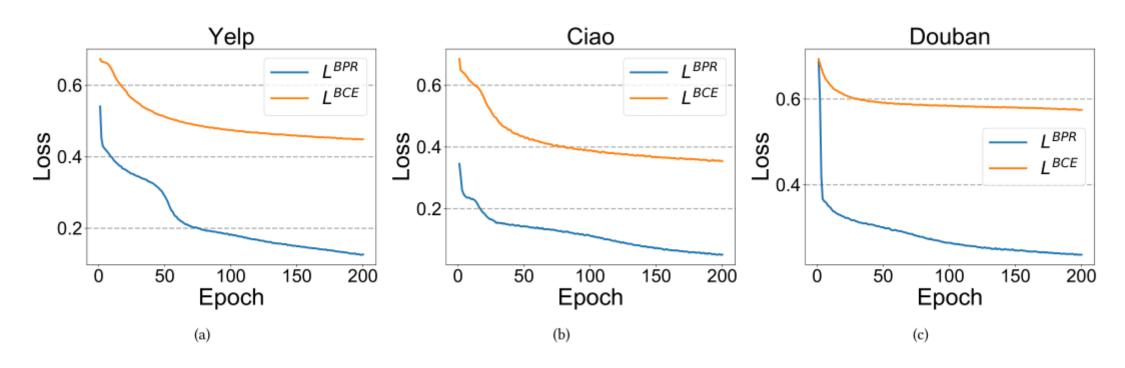


Figure 6: Loss curve of denoising training

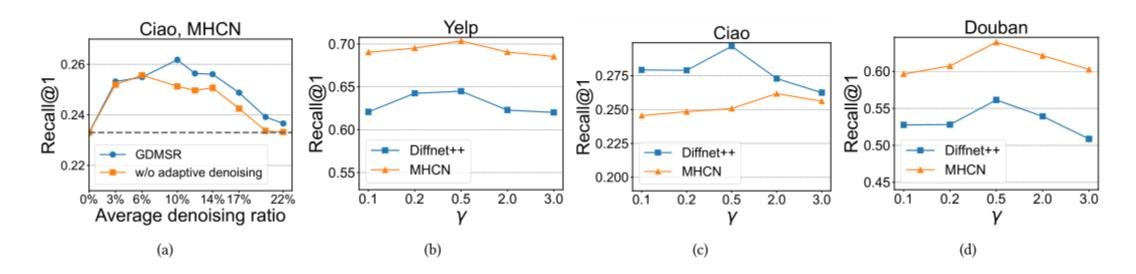


Figure 7: (a)Performance comparison between different denoising strategy. (b)Performance on different γ for adaptive denoising

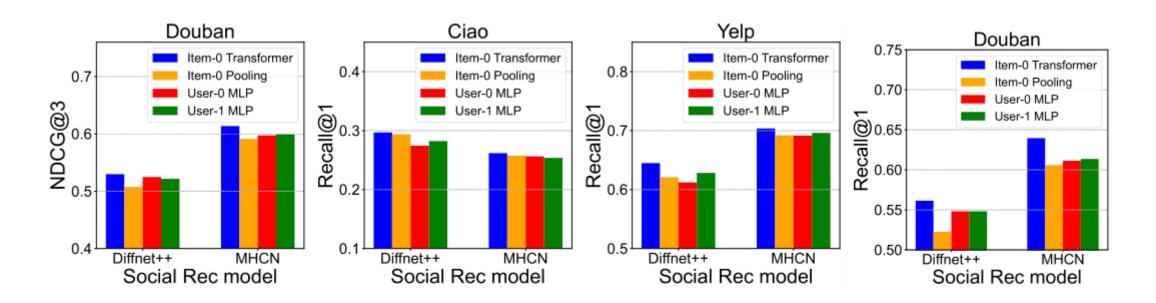


Figure 8: Performance comparison among different relation confidence modeling structures.

Thank you!